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Work during the report period focused on four areas of study, briefly described below:

1. Coordinated x-ray/radio monitoring of the nucleus of Mal.

A simple model for a spherically accreting super massive black hole suggests that it

would be both an x-ray and a radio source, and that its x-ray and radio intensities

would be anti-correlated. In collaboration with radio astronomers using the VLA, we

have obtained near-simultaneous x-ray and radio observations of the nucleus at two

epochs in July 1994. Preliminary results suggesting the presence of an anti-correlation

were presented at the 1995 Tucson AAS meeting. However, this is part of a long-term

study, and additional coordinated x-ray/radio observations are required before one can

confidently claim a result. We have obtained additional observations in January of

1996 and are currently awaiting the results of the VLA analysis.

2. Precise determination of the position of the nuclear x-ray source.

The VLA position of the nucleus is at the edge of the position error circle for the

x-ray source. The source density in the region is sufficiently large that a effort to

determine the x-ray position more carefully is justified. We have begun an effort to

re-measure the x-ray position of the nucleus using Einstein HRI observations made in

1979 and ROSAT observations made in 1990, 1994, 1995, and 1996. We have used the

x-ray detected globular clusters to do the astrometry, and the same analysis procedures

throughout. Final analysis is underway and we expect to submit a paper in the near

future.

3. Characterization of variability for all sources in the field of view.

The center of M31 has been observed with good sensitivity on 3 occasions during the

Einstein era and three occasions (1990, 1994, and 1996) during the ROSAT era. We

are compiling a grand list of all the x-ray sources observed and a history of their

intensities. We hope to provide a better estimate of the total number of sources in

M31 and an estimate of the rate of transients. Preliminary results up to and including

1994 observations were presented at the 1995 Tucson AAS meeting.

4. Development of a technique for determination of intensities of point sources in a

crowded x-ray field.

The high density of sources near the nucleus precludes the use of simple synthetic

aperture photometry to accurately determine their intensities. We have developed and

coded a technique for simultaneous determination of the intensities of x-ray sources

with overlapping point response functions. The technique is described in a paper which

has been submitted to the Astrophysical Journal. A copy of paper is attached.
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ABSTRACT

We present a modified X: fitting technique appropriate for fitting models to binned

data with few events per bin. We demonstrate through numerical simulations that

model parameters estimated with our technique are essentially bias-free, even when the

average number of events per bin is ,--i. This is in contrast to the results from traditional

X 2 techniques, which exhibit significant biases in such cases. The technique is relatively

simple to use and can be easily incorporated into existing parameter-fitting programs.

1. Introduction

X-ray and "y-ray astronomers are often faced with the problem of extracting physical param-

eters from observations consisting of a small number of discrete photon "events". Often, this is

accomplished by combining the events into some number of :'bins", defined by the independent

variables of the problem, and adjusting the parameters of a model until the predicted values in

those bins compare well with observed values. The comparison is quantified through a test statis-

tic, whose extremum defines the model parameters which best fit the data. If the number of events

per bin is sufficiently large that the probability distribution in each bin can be assumed to be

Gaussian, a good estimate of model parameters is provided by minimization of the X2 statistic,

defined here in general terms as

N

X2 = Z (O1 -- 2

where Oi represents the observed number of events in the i th bin and P/(c_:,(_2...(_1¢) the number

predicted from a model with k parameters Ol,a2...ot k (cf. Cramdr 1946). Use of the X 2 statistic

offers the additional advantage that the probability distribution of X 2 itself is well-known, and

hence, goodness-of-fit can be easily assessed. However, when the number of events per bin is small,

parameter estimates derived from )/2 minimization can be significantly biased. Often, this is due to

the commonly-used approximation of replacing P_ with Oi in the denominator of eq. 1 (Bevington

and Robinson 1992, Wheaton et al. 1995, Churazov et al. 1995), but biased parameter estimates

may also be obtained without making this approximation (Nousek and Shue 1989).
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The cause of these biases is sometimes attributed to the use of a statistic associated with

the Gaussian probability distribution in cases in which the Poisson distribution clearly applies.

Indeed, for linear models, maximum-likelihood test statistics such as the C statistic (Cash 1979),

which are based directly on the likelihood function of observing a particular set of events assuming

an underlying Poisson distribution, yield unbiased parameter estimates in the few event limit.

However, as Wheaton et aJ. (1995) and Churazov et al. (1995) have recently shown, unbiased

parameter estimates are also possible using the X 2 test statistic, provided the proper approximations

are made for Pi in the denominator of eq. I. In fact, Wheaton et al. show that if one replaces

the P_ with the (unknown) expectation values Ei = E[Oi], both the X2 and maximum-likelihood

treatments reduce to the solution of the same set of equations. Of course, since the El depend

on the unknown answers, they must be estimated in the minimization process, and both Wheaton

et al. (1995) and Churazov et al. (1995) present techniques for doing so, in the context of the

problems they wish to address.

In this paper, we present a particularly simple and general technique for estimating the Ei,

and demonstrate through numerical simulations the validity of the technique in two simple prob-

lems of interest to X-ray astronomers. We begin, in the next section, with an examination of a

simple X2 minimization problem. Our intent is to provide some insight into the biases inherent in

traditional X 2 minimization and to give a motivation for our technique, which we present in detail

in section 3. We present the results of our numerical experiments in sections 4 and 5. We conclude

with a brief discussion of reasons for considering the X 2 statistic even when other test statistics are

available.

2. Biases in Traditional X2 Minimization

We consider the trivial problem of estimating the sample mean, m, for randomly-occurring

events with true mean _ events per bin, from a set of observed number of events, Oi, in N equally-

sized bins. Eq. 1 can then be rewritten as

N (Oi - m) 2 (2)

i=1

which may be minimized analytically by solving dx2/dm = 0 for m, yielding

N g (Oi -- m) 2 _ 0. (3)

/=1 i=1

The second term in eq. 3 reflects the bias in the fitting technique, since, without it, one would have

the familiar result
1 Y

m N Oi (4)



with expectationvalueElm] = #. The solution to eq. 3, however, is

1/2/1Y \
mt .._

\ " ]i=1

with expectation value E[m _] _ #.

In the general case, X 2 is minimized by solving the set of equations

Generalizing on the results of equations 4 and 5, it seems reasonable to expect a biased result due

to the second term in eq. 6. We argue that this is indeed the case by demonstrating that, in

the absence of that term, eq. 6 reduces to a set of equations identical to those derived from the

maximum likelihood method, which does produce unbiased parameter estimates for linear models.

Following Cram_r (1946), we write Pi = npi, where n is the total number of events and Pi the

probability of an obtaining an event in the i th bin. Eq. 6 then reduces to

N

Z oi 0vi = 0, (7)
i=1 Pi Oak

since it is assumed that )-:_Pi ---- 1. With the likelihood function defined as

N

c = IIp?', (s)
i

the maximum likelihood parameter estimates are given by the solution to the set of equations

N Opi N

Oak i=1 Oak Pi Oakj¢i "=

Under the assumption that/: > 0, this is equivalent to eq. 7.

We do not offer the above argument as a general proof, since there may be a number of

unbiased estimators for a given problem. We only wish to provide some motivation for what

follows. Moreover, since maximum-likelihood estimators are not, in general, unbiased, the claim of

unbiased results through association with the maximum-likelihood formalism is, strictly speaking,

only valid for those models which are known to have unbiased maximum-likelihood estimators, i.e.,

for linear models. However, as we shall see below, the technique does apply to some non-linear

models of interest to x-ray astronomers.

3. A Technique for Unbiased Parameter Estimates

To avoid the biases demonstrated in the previous section, we seek estimates for the Pi in the

denominator of eq. 1, which may be treated as constants in differentiation with respect to the ak.
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Ideally, we would like to use values derived from the parent distributions for each bin, but, of course,

these are unknown a priori. However, if the model being fit provides a reasonable representation

of the data, we may obtain useful estimates of the Pi through an iterative procedure. We rewrite

eq. las

N (o,- p )2
2 -, - (10)

Xj = _i=1 P_-' '

where j is an iteration index. For our present purposes, we restrict the technique to fitting for the

total number of events per bin, including possible background events. The model is then guaranteed

to be positive in each bin, and empty bins will not introduce any singularities in the calculation of

X 2 .

We proceed as follows. At each iteration step, j, the p/j-1 in the denominator of eq. 10

are approximated by the values of the model, using the best-fit parameters (oc_1-1,ad2-1...) of the

previous iteration. These estimates depend on neither the Oi nor the current model P_, being

completely fixed by the results of the previous iteration. X2 is then minimized by standard tech-

niques to produce a new set of best-fit parameters (¢r_l,ad2...), which are in turn used to estimate

the p_-i for the subsequent iteration. For the initial iteration, pO = 1 for all i. The process

may be terminated when differences in either X 2 or the best-fit parameters fall below a suitable

threshold. In our experience, in a number of different problems, convergence is typically achieved

in ,--5 iterations.

We emphasize that once the p_-I have been determined from the results of the previous

iteration, the solution for the new best-fit parameters for the current iteration can be treated as a

standard X 2 minimization problem. No special techniques are required 2. The technique may thus

be incorporated into existing parameter-fitting codes by the addition of a single, simple iteration

loop. Although the need to repeat the minimization process a number of times does impose an

additional computing burden, it is expected to be slight in most cases, given the power of modern

computers.

4. Experiment 1: Fitting a Simple Power Law

To demonstrate our technique, we repeat the numerical experiment of Nousek and Shue (1989),

and simulate pulse height spectra for a simple power law with photon spectral index 7 = 2, from

0.095 to 0.845 keV. For a range of total counts, N, from 25 to 1000, the true pulse-height spectra

are given by

E,+AE E-2dE, i = 1,...15, (11)
_i = No j E i

"_In fact, the problem may have become simplified. Since the denominator in the X 2 sum no longer depends on

the current parameters, non-linear minimization techniques may no longer be necessary. This, of course, depends on

the nature of the particular model.



where

and

0.845 - 0.095
E i --- 0.095 + (i - 1)AE = 0.095 + (i - 1) 15 ' (12)

0.845 E-2dE. (13)N = No JO.O95

For each true spectrum, we simulated 1000 sample spectra (n_}, where each ni was a random

deviate drawn from a Poisson distribution with mean _i- To generate Poisson deviates we used

the Press routine poidev.c (Press et al. 1988), modified to use the random number generator ran0

rather that ranl. For each sample spectrum, we determined the best-fit parameters Nlo it and 7 fit,

using the technique described in section 3 and Powell's Method for function minimization (Press

et al. 1988). This is the same minimization technique used by Nousek and Shue (1989). For each

fit, parameter initial guesses were set to 50% of the true values, and conjugate directions were

initialized to unit vectors.

In Table 1, we show the ratios of the average best-fit parameters to the true values for a

number of different values of total counts N. For N = 25, --_98% of the fits converged. For

all other values of N, virtually all fits (_>99%) converged. For comparison, we also show the

corresponding results from Table 3 of Nousek and Shue (1989), where fitting is accomplished either

by C-statistic minimization or standard X 2 minimization. For all values of N tested, the results of

the iterative X 2 minimization technique exhibit little or no bias, and are comparable in accuracy

to the results of the C-statistic minimization.

To assess the utility of our technique in estimating confidence levels, we calculated the value

of X2 corresponding to the true parameters for each sample spectrum. We then determined the

percentage of the fits for which the 2Xrnin + A X2 contours included 2Xtrue for AX2 values appropriate

to various joint two-parameter confidence levels. Our results are shown in Table 2 and indicate

that iterative X2 minimization provides reasonable estimates for standard confidence levels, even

for small N.

Finally, we compare our sample distributions of X2min with the theoretical X 2 distribution. Our

results are shown in Table 3 and in Figure 1. One-sample Kolmogorov-Smirnov tests indicate that

for N > 50, the sample distributions are consistent with the theoretical distribution at the 99%

confidence level.

5. Experiment 2: Fitting Source and Background Intensities to Image Data

As a second example of iterative X 2 minimization, we consider the problem of determining the

intensities of unresolved x-ray sources at known locations in an x-ray image, in the presence of a

uniform background. Specifically, we consider the case where the separation between sources is

sufficiently small that the individual source photon distributions overlap significantly. In this case,

simple synthetic aperture photometry techniques prove inadequate, since each source aperture will
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containan unknownnumberof eventsfrom other nearbysources.Rather, the intensitiesof all
sourceswhosephotondistributionsoverlapmustbe fit simultaneously.In general,the predicted
numberof eventsin imagepixelij may be written

N

Pij = B + _TokSk, (14)
k=l

where B represents the number of background events per pixel, Sk is the total number of events due

to the k th source, and T_jk is the integral of the point response function, centered at the location

of the k eh source, over the area of pixel ij. Assuming the Tijk are known, the values of B and Sk

may be fit by iterative X 2 minimization, where eq. 10 is replaced by

(Oij- Plj) 2 '
= . .E (15)

and the sum is now over all pixels ij of interest.

We again use simulations to demonstrate the technique. We assume an ideal 256×256 pixel

image containing two sources near the center, separated by 10 pixels. We use the ROSAT HPJ

on-axis point response function (David et al. 1994) to describe the source photon distributions,

and assume source intensities of $1 = 250 and $2 = 50 events each. For each of four values of

B, corresponding to 500, 1000, 5000, and 10000 total background events, we have simulated 1000

sample images, where the value, Oij, of each image pixel is a random deviate drawn from a Poisson

distribution with mean n0 given by eq. 14. The maximum number of events per pixel is typically

,--5, near the peak of the brighter source, and the average number of events per background pixel

ranges from -,-0.008 for the low background case to -_0.15 for the high background case.

For each sarnple image, we fit simultaneously for B, S_, and $2. For this particular problem,

since the model is a linear function of the parameters, the minimum of X2 may be determined

analytically. We use the method of LU decomposition with iterative improvement (Press et al.

1988). Our results are shown in Table 4, where again we tabulate the ratios of the average best-fit

parameters to the true values. In all cases, the averages accurately reproduce the true values.

6. Conclusions

We conclude that biased parameter estimates arising from X2 minimization in the few event

limit may be significantly reduced or eliminated by the use of the iterative technique for calculating

X2 described here. Moreover, confidence levels can still be determined by standard X_in + AX2

techniques, and in many cases the modified test statistic follows a distribution consistent with the

X 2 distribution. The technique is relatively simple to use, and, at each iteration step, reduces to a

standard X 2 minimization problem requiring no special techniques for solution. Therefore, it may

be easily incorporated into existing parameter-fitting codes which employ X 2 minimization.



It remainsto addressthe questionof whyoneshouldconsiderX 2 -fitting at all in cases where

maximum-likelihood techniques are effective. We offer four possible reasons. First, goodness-of-fit

can, in general, be easily assessed using the X 2 test statistic, whereas it cannot, using maximum-

likelihood statistics, without extensive simulations. Second, we believe that it is always useful to

have more than one tool which can be used to attack a particular problem, to allow the researcher

some flexibility in the analysis and a means of cross-checking the results. Third, the astronomical

community at large is at present far more familiar with X 2 minimization techniques, and a X 2 -

fitting tool which can provide accurate results in the few event limit can be useful in testing the

development of maximum-likelihood fitting techniques. Finally, there may be situations in which

the researcher cannot know a priori that the few event limit has been reached. This is likely to

occur, for example, in the automated analysis of a large number of datasets, in which the number

of events per data.set can span a wide range. It may then prove difficult, or at least extremely

inconvenient, to determine the appropriate fitting technique on a case-by-case basis. Rather, one

would prefer to use a single fitting technique which can produce bias-free results for all datasets.

Should maximum-likelihood fitting prove too costly for datasets with many events, a technique such

as iterative X2 minimization may be preferable. In the end, however, we cannot, in general, advocate

one fitting technique over the other. That choice must be made by the individual researcher based

on the details of the problem to be solved.
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Table 1. Comparison of best-fit parameters from iterative )/2 minimization and other fitting

techniques.

Iterative X 2 Minimization C-statistic Minimization Standard X _ Minimization

N hi.fit/Ntrue _yfit/_true N fit/Ntrue _fit,/_/true NJrit/Ntrue _.fit/,),true
= " 0 I_'0 ='0 I''0 " " 0 I_ " 0

25 1.145 1.003 1.269 0.958 0.709 1.152

50 1.055 1.008 1.079 0.998 0.647 1.134

75 1.025 1.009 1.078 0.995 0.636 1.130

100 1.008 1.008 1.053 0.996 0.673 1.109

150 1.025 1.001 1.015 1.005 0.707 1.094

250 1.019 1.000 1.019 1.000 0.767 1.072

500 1.007 1.000 0.997 1.004 0.863 1.040

1000 1.005 1.000 1.001 0.999 0.937 1.017

Table 2. Percentage of fits for which x2min + AX2 includes 2)_true "

AX2 (Expected Percentage)

N 2.30 (68.3%) 4.61 (90%) 6.17 (95.4%) 9.21 (99%) 11.8 (99.73%) 18.4 (99.99%)

25 69.8 87.0 92.1 96.8 98.4 99.9

50 68.9 88.1 93.7 97.2 98.2 98.3

75 67.7 87.8 93.5 98.4 99.3 99.8

100 68.1 89.1 94.1 98.2 99.0 99.8

150 67.0 87.1 93.6 97.7 99.3 100

250 68.0 90.3 95.6 99.2 99.8 100

500 69.1 90.1 95.5 98.9 99.6 99.9

1000 69.6 88.9 95.0 99.0 99.7 1O0



Table 3. Results of One-Sample K-S Tests Comparing Sample and Theoretical X 2 Distributions.

N P(D > Din=..)

25 0.004

50 0.002

75 0.047

100 0.998

150 0.894

250 0.290

500 0.812

1000 0.958

Table 4. Results of fits to background and source intensities in images.

Background Events Bf_ / Btrue '-'1¢I_I"-'l/¢_rue S_it/S_rue

500 0.999 0.997 0.995

1000 0.999 0.999 1.004

5000 1.001 0.997 0.999

I0000 1.000 1.000 1.002
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Fig. 1.-- Comparisonof sampleand theoreticalX 2 distributions for Experiment 1. Histograms of
2

)lmin values, normalized to unit area, and sample cumulative distributions are indicated by solid

curves. Probability densities and cumulative distributions for the )/2 distribution sre indicated by

dotted curves, a) N -- 25. b) N -- 100.
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